
Security Assessment

UnityMeta Token Audit
CertiK Verified on Feb 28th, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

2 Major 1 Resolved, 1 Mitigated
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

5 Minor 5 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

3 Informational 3 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY UNITYMETA TOKEN AUDIT

CertiK Verified on Feb 28th, 2023

UnityMeta Token Audit

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Others

ECOSYSTEM

Binance Smart Chain

(BSC)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 02/28/2023

KEY COMPONENTS

N/A

CODEBASE
https://bscscan.com/address/0xca861e289f04cb9c67fd6b87ca7eafa591

92f164

...View All

10
Total Findings

1
Resolved

1
Mitigated

0
Partially Resolved

8
Acknowledged

0
Declined

0
Unresolved

https://bscscan.com/address/0xca861e289f04cb9c67fd6b87ca7eafa59192f164

TABLE OF CONTENTS UNITYMETA TOKEN AUDIT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

UMT-01 : Initial Token Distribution

UMT-02 : Centralization Risks in UnityMetaToken.sol

UMT-03 : Miscalculation of Max Holding

UMT-04 : Usage of `transfer`/`send` for sending Ether

UMT-05 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

UMT-06 : Pull-Over-Push Pattern In `transferOwnership()` Function

UMT-07 : `_maxBurning` limit could be surpassed

UMT-08 : Too Many Digits

UMT-09 : Unlocked Compiler Version

UMT-10 : Confusing Variable Name

Optimizations

UMT-11 : Unnecessary Use of SafeMath

UMT-12 : State Variable Should Be Declared Constant

UMT-13 : Variables That Could Be Declared as Immutable

UMT-14 : User-Defined Getters

UMT-15 : Unused Function `_burnFrom`

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS UNITYMETA TOKEN AUDIT

CODEBASE UNITYMETA TOKEN AUDIT

Repository

https://bscscan.com/address/0xca861e289f04cb9c67fd6b87ca7eafa59192f164

CODEBASE UNITYMETA TOKEN AUDIT

https://bscscan.com/address/0xca861e289f04cb9c67fd6b87ca7eafa59192f164

AUDIT SCOPE UNITYMETA TOKEN AUDIT

1 file audited 1 file with Acknowledged findings

ID File SHA256 Checksum

UMT UnityMetaToken.sol
b3c1ced80c48cd694f9ac8e664d421639f4325

5f7899a1ed12a7842bc448722c

AUDIT SCOPE UNITYMETA TOKEN AUDIT

APPROACH & METHODS UNITYMETA TOKEN AUDIT

This report has been prepared for UnityMeta Token to discover issues and vulnerabilities in the source code of the UnityMeta

Token Audit project as well as any contract dependencies that were not part of an officially recognized library. A

comprehensive examination has been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS UNITYMETA TOKEN AUDIT

FINDINGS UNITYMETA TOKEN AUDIT

This report has been prepared to discover issues and vulnerabilities for UnityMeta Token Audit. Through this audit, we have

uncovered 10 issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

UMT-01 Initial Token Distribution
Centralization /

Privilege
Major Mitigated

UMT-02
Centralization Risks In

UnityMetaToken.Sol

Centralization /

Privilege
Major Resolved

UMT-03 Miscalculation Of Max Holding Logical Issue Minor Acknowledged

UMT-04
Usage Of transfer / send For

Sending Ether
Volatile Code Minor Acknowledged

UMT-05
Unchecked ERC-20 transfer() /

transferFrom() Call
Volatile Code Minor Acknowledged

UMT-06
Pull-Over-Push Pattern In

transferOwnership() Function
Logical Issue Minor Acknowledged

UMT-07 _maxBurning Limit Could Be Surpassed
Mathematical

Operations
Minor Acknowledged

UMT-08 Too Many Digits Coding Style Informational Acknowledged

UMT-09 Unlocked Compiler Version Language Specific Informational Acknowledged

UMT-10 Confusing Variable Name Coding Style Informational Acknowledged

FINDINGS UNITYMETA TOKEN AUDIT

10
Total Findings

0
Critical

2
Major

0
Medium

5
Minor

3
Informational

UMT-01 INITIAL TOKEN DISTRIBUTION

Category Severity Location Status

Centralization / Privilege Major UnityMetaToken.sol: 150 Mitigated

Description

Tokens are sent to owner when deploying the contract. This could be a centralization risk as the owner can distribute tokens

without obtaining the consensus of the community.

Recommendation

We recommend the team to be transparent regarding the initial token distribution process, and the team shall make enough

efforts to restrict the access of the private key.

Alleviation

Tokens are sent to owner when deploying the contract. Owner transfer the token only on limited addresses for token locking

purpose. 81% Token has been locked on DXSale.app. Token Locker details.

1. https://dxsale.app/dxlockview?

id=0&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

2. https://dxsale.app/dxlockview?

id=1&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

3. https://dxsale.app/dxlockview?

id=2&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

4. https://dxsale.app/dxlockview?

id=3&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

5. https://dxsale.app/dxlockview?

id=4&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

6. https://dxsale.app/dxlockview?

id=5&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

7. https://dxsale.app/dxlockview?

id=6&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

8. https://dxsale.app/dxlockview?

UMT-01 UNITYMETA TOKEN AUDIT

https://dxsale.app/dxlockview?id=0&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=1&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=2&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=3&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=4&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=5&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=6&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=7&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

id=7&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

9. https://dxsale.app/dxlockview?

id=8&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

10. https://dxsale.app/dxlockview?

id=9&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

11. https://dxsale.app/dxlockview?

id=10&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

12. https://dxsale.app/dxlockview?

id=11&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

13. https://dxsale.app/dxlockview?

id=12&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

14. https://dxsale.app/dxlockview?

id=13&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

15. https://dxsale.app/dxlockview?

id=14&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

16. https://dxsale.app/dxlockview?

id=15&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

17. https://dxsale.app/dxlockview?

id=16&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

18. https://dxsale.app/dxlockview?

id=17&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

19. https://dxsale.app/dxlockview?

id=18&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

UMT-01 UNITYMETA TOKEN AUDIT

https://dxsale.app/dxlockview?id=7&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=8&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=9&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=10&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=11&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=12&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=13&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=14&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=15&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=16&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=17&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB
https://dxsale.app/dxlockview?id=18&add=0xca861e289f04cB9C67fd6b87ca7EAFa59192f164&type=tokenlock&chain=BNB

UMT-02 CENTRALIZATION RISKS IN UNITYMETATOKEN.SOL

Category Severity Location Status

Centralization /

Privilege
Major

UnityMetaToken.sol: 109, 114, 193, 198, 204, 208, 214, 22

3, 229, 314, 319
Resolved

Description

In the contract Ownable the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and transfer and renounce the ownership of

the contract.

Authenticated Role

Function

Function State Variables

Function Calls

_owner

transferOwnership

renounceOwnership

_transferOwnership

_owner

In the contract UnityMetaToken the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and update the contract

settings, as well as transfer any BEP20 token and BNB owned by the contract.

UMT-02 UNITYMETA TOKEN AUDIT

Authenticated Role

Function

Function

Function
State Variables

Function State Variables

Function Function Calls

Function Calls

Function

Function State Variables

Function

Function

_owner

rescueBNB

updateAllowedTransfer

updateMaxTxLimit

updateMaxBurning

rescueAnyBEP20Tokens

bulkIsBlacklisted

updateMaxWalletlimit

updateIsBlacklisted

bulkupdateAllowedTransfer

payable

maxSellLimit

maxBuyLimit

_maxBurning

IBEP20

maxWalletLimit

UMT-02 UNITYMETA TOKEN AUDIT

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

UMT-02 UNITYMETA TOKEN AUDIT

Ownership set to zero address.

UMT-02 UNITYMETA TOKEN AUDIT

UMT-03 MISCALCULATION OF MAX HOLDING

Category Severity Location Status

Logical Issue Minor UnityMetaToken.sol: 277 Acknowledged

Description

The transaction may be charged fees, so the max holding of the receiver should be the sum of the held tokens and the

amount received from the transfer. The fees should not be included in the max holding.

Max holding is checked:

277 require(_balances[recipient] + amount <= maxWalletLimit,"Receiver are

exceeding maxWalletLimit");

Receiving amount is adjusted.

286 transferAmount = amount.sub(tokensToBurn);

Balance is increased by the adjusted amount.

288 _balances[recipient] = _balances[recipient].add(transferAmount);

Recommendation

We recommend the client check the max holding using the amount received after it has been calculated.

UMT-03 UNITYMETA TOKEN AUDIT

UMT-04 USAGE OF transfer / send FOR SENDING ETHER

Category Severity Location Status

Volatile Code Minor UnityMetaToken.sol: 316 Acknowledged

Description

It is not recommended to use Solidity's transfer() and send() functions for transferring Ether, since some contracts may

not be able to receive the funds. Those functions forward only a fixed amount of gas (2300 specifically) and the receiving

contracts may run out of gas before finishing the transfer. Also, EVM instructions' gas costs may increase in the future. Thus,

some contracts that can receive now may stop working in the future due to the gas limitation.

316 payable(msg.sender).transfer(weiAmount);

UnityMetaToken.rescueBNB uses transfer() .

Recommendation

We recommend using the Address.sendValue() function from OpenZeppelin.

Since Address.sendValue() may allow reentrancy, we also recommend guarding against reentrancy attacks by utilizing

the Checks-Effects-Interactions Pattern or applying OpenZeppelin ReentrancyGuard.

Alleviation

Issue acknowledged. I will fix the issue in the future, which will not be included in this audit engagement.

UMT-04 UNITYMETA TOKEN AUDIT

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.7/contracts/utils/Address.sol#L60
https://docs.soliditylang.org/en/v0.8.15/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.7/contracts/security/ReentrancyGuard.sol

UMT-05 UNCHECKED ERC-20 transfer() / transferFrom() CALL

Category Severity Location Status

Volatile Code Minor UnityMetaToken.sol: 324 Acknowledged

Description

The return value of the transfer()/transferFrom() call is not checked.

324 IBEP20(_tokenAddr).transfer(_to, _amount);

Recommendation

Since some ERC-20 tokens return no values and others return a bool value, they should be handled with care. We advise

using the OpenZeppelin's SafeERC20.sol implementation to interact with the transfer() and transferFrom()

functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a return value and

reverts if false is returned, making it compatible with all ERC-20 token implementations.

UMT-05 UNITYMETA TOKEN AUDIT

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol

UMT-06 PULL-OVER-PUSH PATTERN IN transferOwnership()

FUNCTION

Category Severity Location Status

Logical Issue Minor UnityMetaToken.sol: 118 Acknowledged

Description

The change of _owner by function transferOwnership() overrides the previously set _owner with the new one without

guaranteeing the new _owner is able to actuate transactions on-chain.

Recommendation

We advise the pull-over-push pattern to be applied here whereby a new owner is first proposed and consequently needs to

accept the _owner status ensuring that the account can actuate transactions on-chain. The following code snippet can be

taken as a reference:

address public potentialOwner;

function transferOwnership(address pendingOwner) external onlyOwner {

 require(pendingOwner != address(0), "potential owner can not be the zero

address.")

 potentialOwner = pendingOwner;

 emit OwnerNominated(pendingOwner);

}

function acceptOwnership() external {

 require(msg.sender == potentialOwner, 'You must be nominated as potential owner

before you can accept ownership');

 emit OwnerChanged(_owner, potentialOwner);

 _owner = potentialOwner;

 potentialOwner = address(0);

}

Alleviation

Ownership set to zero address.

UMT-06 UNITYMETA TOKEN AUDIT

UMT-07 _maxBurning LIMIT COULD BE SURPASSED

Category Severity Location Status

Mathematical Operations Minor UnityMetaToken.sol: 281 Acknowledged

Description

The _transfer function checks if the _maxBurning limit is reached before burning tokens. However, the tokens that will

be burned in this transaction are not taken into account in the calculation.

if(_totalBurning < _maxBurning)

 {

 uint256 tokensToBurn = _burnToken(amount);

 _totalBurning = _totalBurning.add(tokensToBurn);

The correct code should be:

uint256 tokensToBurn = _burnToken(amount);

if ((_totalBurning + tokensToBurn) <= _maxBurning)

 {

 _totalBurning = _totalBurning.add(tokensToBurn);

Recommendation

We recommend changing the calculation so the _maxBurning limit is not surpassed.

UMT-07 UNITYMETA TOKEN AUDIT

UMT-08 TOO MANY DIGITS

Category Severity Location Status

Coding Style Informational UnityMetaToken.sol: 145, 146, 147, 148, 149 Acknowledged

Description

Literals with many digits are difficult to read and review.

Recommendation

We recommend using scientific notation (e.g. 1e6) or underscores (e.g. 1_000_000) to improve readability.

Alleviation

i think it is right

UMT-08 UNITYMETA TOKEN AUDIT

UMT-09 UNLOCKED COMPILER VERSION

Category Severity Location Status

Language Specific Informational UnityMetaToken.sol: 6 Acknowledged

Description

The contracts cited have an unlocked compiler version. An unlocked compiler version in the source code of the contract

permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated bytecode

between compilations due to differing compiler version numbers. This can lead to ambiguity when debugging, as compiler

specific bugs may occur in the codebase that would be hard to identify over a span of multiple compiler versions rather than

a specific one.

Recommendation

We recommend the compiler version is instead locked at the lowest version possible that the contract can be compiled at.

For example, for version v0.8.2 the contract should contain the following line:

pragma solidity 0.8.2;

Alleviation

Actually We Have no Power to change any things now because contract owner now is Null/Zero Address.

UMT-09 UNITYMETA TOKEN AUDIT

UMT-10 CONFUSING VARIABLE NAME

Category Severity Location Status

Coding Style Informational UnityMetaToken.sol: 129, 275 Acknowledged

Description

The function _transfer() from the contract UnityMetaToken , checks if the sender and recipient are allowed to transfer

tokens using the variable:

mapping(address => bool) public allowedTransfer

However, when the variable is set to true, the transactions are not allowed:

require(!allowedTransfer[sender] && !allowedTransfer[recipient], "Transfer not

allowed");

Recommendation

We recommend changing the variable name to be more specific and provide better readability, e.g. notAllowedTransfer .

Alleviation

Actually We Have no Power to change any things now because contract owner now is Null/Zero Address.

UMT-10 UNITYMETA TOKEN AUDIT

OPTIMIZATIONS UNITYMETA TOKEN AUDIT

ID Title Category Severity Status

UMT-11 Unnecessary Use Of SafeMath
Gas

Optimization
Optimization Acknowledged

UMT-12 State Variable Should Be Declared Constant
Gas

Optimization
Optimization Acknowledged

UMT-13
Variables That Could Be Declared As

Immutable

Gas

Optimization
Optimization Acknowledged

UMT-14 User-Defined Getters
Gas

Optimization
Optimization Acknowledged

UMT-15 Unused Function _burnFrom
Gas

Optimization
Optimization Acknowledged

OPTIMIZATIONS UNITYMETA TOKEN AUDIT

UMT-11 UNNECESSARY USE OF SAFEMATH

Category Severity Location Status

Gas

Optimization
Optimization

UnityMetaToken.sol: 36, 235, 256, 261, 266, 279, 284, 28

5, 286, 288, 295, 296, 310
Acknowledged

Description

The SafeMath library is used unnecessarily. With Solidity compiler versions 0.8.0 or newer, arithmetic operations will

automatically revert in case of integer overflow or underflow.

36 library SafeMath {

An implementation of SafeMath library is found.

126 using SafeMath for uint256;

SafeMath library is used for uint256 type in UnityMetaToken contract.

235 uint256 burnAmount = amount.mul(basePercent).div(1000);

SafeMath.mul is called in _burnToken function of UnityMetaToken contract.

Note: Only a sample of 2 SafeMath library usage in this contract (out of 14) are shown above.

Recommendation

We advise removing the usage of SafeMath library and using the built-in arithmetic operations provided by the Solidity

programming language.

Alleviation

Actually We Have no Power to change any things now because contract owner now is Null/Zero Address.

UMT-11 UNITYMETA TOKEN AUDIT

UMT-12 STATE VARIABLE SHOULD BE DECLARED CONSTANT

Category Severity Location Status

Gas Optimization Optimization UnityMetaToken.sol: 131 Acknowledged

Description

State variables that never change should be declared as constant to save gas.

131 uint256 public basePercent = 1;

basePercent should be declared constant .

Recommendation

We recommend adding the constant attribute to state variables that never change.

Alleviation

Actually We Have no Power to change any things now because contract owner now is Null/Zero Address.

UMT-12 UNITYMETA TOKEN AUDIT

UMT-13 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas Optimization Optimization UnityMetaToken.sol: 135 Acknowledged

Description

The linked variables assigned in the constructor can be declared as immutable . Immutable state variables can be assigned

during contract creation but will remain constant throughout the lifetime of a deployed contract. A big advantage of immutable

variables is that reading them is significantly cheaper than reading from regular state variables since they will not be stored in

storage.

Recommendation

We recommend declaring these variables as immutable. Please note that the immutable keyword only works in Solidity

version v0.6.5 and up.

Alleviation

Actually We Have no Power to change any things now because contract owner now is Null/Zero Address.

UMT-13 UNITYMETA TOKEN AUDIT

UMT-14 USER-DEFINED GETTERS

Category Severity Location Status

Gas Optimization Optimization UnityMetaToken.sol: 186~188, 190~192 Acknowledged

Description

The linked functions are equivalent to the compiler-generated getter functions for the respective variables.

Recommendation

We advise that the linked variables are instead declared as public as compiler-generated getter functions are less prone

to error and much more maintainable than manually written ones.

Alleviation

Actually We Have no Power to change any things now because contract owner now is Null/Zero Address.

UMT-14 UNITYMETA TOKEN AUDIT

UMT-15 UNUSED FUNCTION _burnFrom

Category Severity Location Status

Gas Optimization Optimization UnityMetaToken.sol: 308 Acknowledged

Description

The internal facing function _burnFrom is designed to burn a certain amount of tokens from an account. However, it is not

used within the contract. If the function is not intended to be used anywhere, it can be safely omitted.

Recommendation

We recommend removing the unused function.

Alleviation

Actually We Have no Power to change any things now because contract owner now is Null/Zero Address.

UMT-15 UNITYMETA TOKEN AUDIT

FORMAL VERIFICATION UNITYMETA TOKEN AUDIT

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transfer-revert-zero Function transfer Prevents Transfers to the Zero Address

erc20-transfer-succeed-self Function transfer Succeeds on Admissible Self Transfers

erc20-transfer-succeed-normal Function transfer Succeeds on Admissible Non-self Transfers

erc20-transfer-exceed-balance Function transfer Fails if Requested Amount Exceeds Available Balance

erc20-transfer-recipient-overflow Function transfer Prevents Overflows in the Recipient's Balance

erc20-transfer-false
If Function transfer Returns false , the Contract State Has Not Been

Changed

erc20-transfer-never-return-false Function transfer Never Returns false

erc20-transferfrom-revert-from-zero Function transferFrom Fails for Transfers From the Zero Address

erc20-transferfrom-revert-to-zero Function transferFrom Fails for Transfers To the Zero Address

erc20-transferfrom-succeed-normal Function transferFrom Succeeds on Admissible Non-self Transfers

FORMAL VERIFICATION UNITYMETA TOKEN AUDIT

Property Name Title

erc20-transferfrom-succeed-self Function transferFrom Succeeds on Admissible Self Transfers

erc20-transfer-correct-amount Function transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-change-state Function transfer Has No Unexpected State Changes

erc20-transferfrom-correct-allowance Function transferFrom Updated the Allowance Correctly

erc20-transfer-correct-amount-self Function transfer Transfers the Correct Amount in Self Transfers

erc20-transferfrom-fail-exceed-balance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Balance

erc20-transferfrom-fail-exceed-allowance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Allowance

erc20-transferfrom-fail-recipient-overflow Function transferFrom Prevents Overflows in the Recipient's Balance

erc20-transferfrom-false
If Function transferFrom Returns false , the Contract's State Has Not

Been Changed

erc20-transferfrom-never-return-false Function transferFrom Never Returns false

erc20-totalsupply-succeed-always Function totalSupply Always Succeeds

erc20-totalsupply-correct-value
Function totalSupply Returns the Value of the Corresponding State

Variable

erc20-totalsupply-change-state Function totalSupply Does Not Change the Contract's State

erc20-balanceof-succeed-always Function balanceOf Always Succeeds

erc20-balanceof-correct-value Function balanceOf Returns the Correct Value

erc20-balanceof-change-state Function balanceOf Does Not Change the Contract's State

erc20-allowance-succeed-always Function allowance Always Succeeds

erc20-allowance-correct-value Function allowance Returns Correct Value

erc20-allowance-change-state Function allowance Does Not Change the Contract's State

erc20-approve-revert-zero Function approve Prevents Giving Approvals For the Zero Address

erc20-approve-succeed-normal Function approve Succeeds for Admissible Inputs

FORMAL VERIFICATION UNITYMETA TOKEN AUDIT

Property Name Title

erc20-approve-correct-amount Function approve Updates the Approval Mapping Correctly

erc20-approve-change-state Function approve Has No Unexpected State Changes

erc20-approve-false
If Function approve Returns false , the Contract's State Has Not Been

Changed

erc20-transferfrom-correct-amount
Function transferFrom Transfers the Correct Amount in Non-self

Transfers

erc20-approve-never-return-false Function approve Never Returns false

erc20-transferfrom-correct-amount-self Function transferFrom Performs Self Transfers Correctly

erc20-transferfrom-change-state Function transferFrom Has No Unexpected State Changes

Verification Results

In the remainder of this section, we list all contracts where model checking of at least one property was not successful. There

are several reasons why this could happen:

Model checking reports a counterexample that violates the property. Depending on the counterexample,this occurs if

The specification of the property is too generic and does not accurately capture the intended behavior of

the smart contract. In that case, the counterexample does not indicate a problem in the underlying smart

contract. We report such instances as being "inapplicable".

The property is applicable to the smart contract. In that case, the counterexample showcases a problem

in the smart contract and a correspond finding is reported separately in the Findings section of this

report. In the following tables, we report such instances as "invalid". The distinction between spurious

and actual counterexamples is done manually by the auditors.

The model checking result is inconclusive. Such a result does not indicate a problem in the underlying smart

contract. An inconclusive result may occur if

The model checking engine fails to construct a proof. This can happen if the logical deductions

necessary are beyond the capabilities of the automated reasoning tool. It is a technical limitation of all

proof engines and cannot be avoided in general.

The model checking engine runs out of time or memory and did not produce a result. This can happen if

automatic abstraction techniques are ineffective or of the state space is too big.

Detailed Results For Contract UnityMetaToken (UnityMetaToken.sol)

FORMAL VERIFICATION UNITYMETA TOKEN AUDIT

Verification of ERC-20 Compliance

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-succeed-self Inapplicable Inapplicable

erc20-transfer-succeed-normal Inapplicable Inapplicable

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-never-return-false True

erc20-transfer-correct-amount Inapplicable Intended behavior

erc20-transfer-change-state Inapplicable Intended behavior

erc20-transfer-correct-amount-self Inapplicable Context not considered

FORMAL VERIFICATION UNITYMETA TOKEN AUDIT

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-normal Inapplicable Inapplicable

erc20-transferfrom-succeed-self Inapplicable Inapplicable

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

erc20-transferfrom-correct-amount Inapplicable Context not considered

erc20-transferfrom-correct-amount-self Inapplicable Context not considered

erc20-transferfrom-change-state Inapplicable Intended behavior

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION UNITYMETA TOKEN AUDIT

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

FORMAL VERIFICATION UNITYMETA TOKEN AUDIT

APPENDIX UNITYMETA TOKEN AUDIT

Finding Categories

Categories Description

Centralization /

Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that

act against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization
Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical

Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows,

incorrect operations etc.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on

how block.timestamp works.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

that may result in a vulnerability.

Language

Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of

private or delete.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified using symbolic model checking. Each such

contract was compiled into a mathematical model which reflects all its possible behaviors with respect to the property. The

model takes into account the semantics of the Solidity instructions found in the contract. All verification results that we report

are based on that model.

Technical Description

APPENDIX UNITYMETA TOKEN AUDIT

The model also formalizes a simplified execution environment of the Ethereum blockchain and a verification harness that

performs the initialization of the contract and all possible interactions with the contract. Initially, the contract state is initialized

non-deterministically (i.e. by arbitrary values) and over-approximates the reachable state space of the contract throughout

any actual deployment on chain. All valid results thus carry over to the contract's behavior in arbitrary states after it has been

deployed.

Assumptions and Simplifications

The following assumptions and simplifications apply to our model:

Gas consumption is not taken into account, i.e. we assume that executions do not terminate prematurely because

they run out of gas.

The contract's state variables are non-deterministically initialized before invocation of any function. That ignores

contract invariants and may lead to false positives. It is, however, a safe over-approximation.

The verification engine reasons about unbounded integers. Machine arithmetic is modeled using modular arithmetic

based on the bit-width of the underlying numeric Solidity type. This ensures that over- and underflow characteristics

are faithfully represented.

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for Property Specification

All properties are expressed in linear temporal logic (LTL). For that matter, we treat each invocation of and each return from a

public or an external function as a discrete time step. Our analysis reasons about the contract's state upon entering and upon

leaving public or external functions.

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates as atomic propositions. They are evaluated on the contract's state whenever a discrete time step

occurs:

started(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond .

willSucceed(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond

and considers only those executions that do not revert.

finished(f, [cond]) Indicates that execution returns from contract function f in a state satisfying formula

cond . Here, formula cond may refer to the contract's state variables and to the value they had upon entering the

function (using the old function).

reverted(f, [cond]) Indicates that execution of contract function f was interrupted by an exception in a

contract state satisfying formula cond .

The verification performed in this audit operates on a harness that non-deterministically invokes a function of the contract's

public or external interface. All formulas are analyzed w.r.t. the trace that corresponds to this function invocation.

Description of the Analyzed ERC-20 Properties

APPENDIX UNITYMETA TOKEN AUDIT

The specifications are designed such that they capture the desired and admissible behaviors of the ERC-20 functions

transfer , transferFrom , approve , allowance , balanceOf , and totalSupply . In the following, we list those

property specifications.

Properties related to function transfer

erc20-transfer-revert-zero

Function transfer Prevents Transfers to the Zero Address. Any call of the form transfer(recipient, amount) must fail

if the recipient address is the zero address. Specification:

[](started(contract.transfer(to, value), to == address(0)) ==>

 <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

 == false)))

erc20-transfer-succeed-normal

Function transfer Succeeds on Admissible Non-self Transfers. All invocations of the form transfer(recipient,

amount) must succeed and return true if

the recipient address is not the zero address,

amount does not exceed the balance of address msg.sender ,

transferring amount to the recipient address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transfer(to, value), to != address(0) && to != msg.sender &&

 value >= 0 && value <= _balances[msg.sender] && _balances[to] + value <

 0x100 &&

 _balances[to] >= 0 && _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-succeed-self

Function transfer Succeeds on Admissible Self Transfers. All self-transfers, i.e. invocations of the form

transfer(recipient, amount) where the recipient address equals the address in msg.sender must succeed and

return true if

the value in amount does not exceed the balance of msg.sender and

the supplied gas suffices to complete the call. Specification:

APPENDIX UNITYMETA TOKEN AUDIT

[](started(contract.transfer(to, value), to != address(0) && to == msg.sender &&

 value >= 0 && value <= _balances[msg.sender] && _balances[msg.sender] >= 0 &&

 _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-correct-amount

Function transfer Transfers the Correct Amount in Non-self Transfers. All non-reverting invocations of

transfer(recipient, amount) that return true must subtract the value in amount from the balance of msg.sender

and add the same value to the balance of the recipient address. Specification:

[](willSucceed(contract.transfer(to, value), to != msg.sender && _balances[to] >= 0

 && value >= 0 && _balances[to] + value <

 0x100 &&

 _balances[msg.sender] >= 0 && _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true ==>

 _balances[msg.sender] == old(_balances[msg.sender]) - value && _balances[to]

 == old(_balances[to]) + value)))

erc20-transfer-correct-amount-self

Function transfer Transfers the Correct Amount in Self Transfers. All non-reverting invocations of transfer(recipient,

amount) that return true and where the recipient address equals msg.sender (i.e. self-transfers) must not change

the balance of address msg.sender . Specification:

[](willSucceed(contract.transfer(to, value), to == msg.sender && _balances[to] >= 0

 && _balances[to] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true ==> _balances[to] ==

 old(_balances[to]))))

erc20-transfer-change-state

Function transfer Has No Unexpected State Changes. All non-reverting invocations of transfer(recipient, amount)

that return true must only modify the balance entries of the msg.sender and the recipient addresses. Specification:

[](willSucceed(contract.transfer(to, value), p1 != msg.sender && p1 != to) ==>

 <>(finished(contract.transfer(to, value), return == true ==> (_totalSupply ==

 old(_totalSupply) && _allowances == old(_allowances) && _balances[p1] ==

 old(_balances[p1]) && other_state_variables ==

 old(other_state_variables)))))

erc20-transfer-exceed-balance

APPENDIX UNITYMETA TOKEN AUDIT

Function transfer Fails if Requested Amount Exceeds Available Balance. Any transfer of an amount of tokens that

exceeds the balance of msg.sender must fail. Specification:

[](started(contract.transfer(to, value), value > _balances[msg.sender] &&

 _balances[msg.sender] >= 0 && value <

 0x100) ==>

 <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

 == false)))

erc20-transfer-recipient-overflow

Function transfer Prevents Overflows in the Recipient's Balance. Any invocation of transfer(recipient, amount)

must fail if it causes the balance of the recipient address to overflow. Specification:

[](started(contract.transfer(to, value), to != msg.sender && _balances[to] + value

 >= 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100 &&

 _balances[msg.sender] <

 0x100 && value >

 0 && value <= _balances[msg.sender]) ==> <>(reverted(contract.transfer) ||

 finished(contract.transfer(to, value), return == false) ||

 finished(contract.transfer(to, value), _balances[to] > old(_balances[to]) +

 value -

 0x100)))

erc20-transfer-false

If Function transfer Returns false , the Contract State Has Not Been Changed. If the transfer function in contract

contract fails by returning false , it must undo all state changes it incurred before returning to the caller. Specification:

[](willSucceed(contract.transfer(to, value)) ==> <>(finished(contract.transfer(to,

 value), return == false ==> (_balances == old(_balances) && _totalSupply ==

 old(_totalSupply) && _allowances == old(_allowances) &&

 other_state_variables == old(other_state_variables)))))

erc20-transfer-never-return-false

Function transfer Never Returns false . The transfer function must never return false to signal a failure.

Specification:

[](!(finished(contract.transfer, return == false)))

Properties related to function transferFrom

APPENDIX UNITYMETA TOKEN AUDIT

erc20-transferfrom-revert-from-zero

Function transferFrom Fails for Transfers From the Zero Address. All calls of the form transferFrom(from, dest,

amount) where the from address is zero, must fail. Specification:

[](started(contract.transferFrom(from, to, value), from == address(0)) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-revert-to-zero

Function transferFrom Fails for Transfers To the Zero Address. All calls of the form transferFrom(from, dest, amount)

where the dest address is zero, must fail. Specification:

[](started(contract.transferFrom(from, to, value), to == address(0)) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-succeed-normal

Function transferFrom Succeeds on Admissible Non-self Transfers. All invocations of transferFrom(from, dest,

amount) must succeed and return true if

the value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from ,

transferring a value of amount to the address in dest does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transferFrom(from, to, value), from != address(0) && to !=

 address(0) && from != to && value <= _balances[from] && value <=

 _allowances[from][msg.sender] && _balances[to] + value <

 0x100 && value >=

 0 && _balances[to] >= 0 && _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-succeed-self

Function transferFrom Succeeds on Admissible Self Transfers. All invocations of transferFrom(from, dest, amount)

where the dest address equals the from address (i.e. self-transfers) must succeed and return true if:

The value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from , and

APPENDIX UNITYMETA TOKEN AUDIT

the supplied gas suffices to complete the call. Specification:

[](started(contract.transferFrom(from, to, value), from != address(0) && from == to

 && value <= _balances[from] && value <= _allowances[from][msg.sender] && value

 >= 0 && _balances[from] <

 0x100 &&

 _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-correct-amount

Function transferFrom Transfers the Correct Amount in Non-self Transfers. All invocations of transferFrom(from, dest,

amount) that succeed and that return true subtract the value in amount from the balance of address from and add the

same value to the balance of address dest . Specification:

[](willSucceed(contract.transferFrom(from, to, value), from != to && value >= 0 &&

 _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _balances[to] >= 0 && _balances[to] + value <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 _balances[from] == old(_balances[from]) - value && _balances[to] ==

 old(_balances[to] + value))))

erc20-transferfrom-correct-amount-self

Function transferFrom Performs Self Transfers Correctly. All non-reverting invocations of transferFrom(from, dest,

amount) that return true and where the address in from equals the address in dest (i.e. self-transfers) do not change

the balance entry of the from address (which equals dest). Specification:

[](willSucceed(contract.transferFrom(from, to, value), from == to && value >= 0 &&

 value < 0x100 &&

 _balances[from] >= 0 && _balances[from] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 _balances[from] == old(_balances[from]))))

erc20-transferfrom-correct-allowance

Function transferFrom Updated the Allowance Correctly. All non-reverting invocations of transferFrom(from, dest,

amount) that return true must decrease the allowance for address msg.sender over address from by the value in

amount . Specification:

APPENDIX UNITYMETA TOKEN AUDIT

[](willSucceed(contract.transferFrom(from, to, value), value >= 0 && value <

 0x100 &&

 _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100 &&

 _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 ((_allowances[from][msg.sender] == old(_allowances[from][msg.sender]) -

 value) || (_allowances[from][msg.sender] ==

 old(_allowances[from][msg.sender]) && (from == msg.sender ||

 old(_allowances[from][msg.sender]) ==

 0xFF))))))

erc20-transferfrom-change-state

Function transferFrom Has No Unexpected State Changes. All non-reverting invocations of transferFrom(from, dest,

amount) that return true may only modify the following state variables:

The balance entry for the address in dest ,

The balance entry for the address in from ,

The allowance for the address in msg.sender for the address in from . Specification:

[](willSucceed(contract.transferFrom(from, to, amount), p1 != from && p1 != to &&

 (p2 != from || p3 != msg.sender)) ==> <>(finished(contract.transferFrom(from,

 to, amount), return == true ==> (_totalSupply == old(_totalSupply) &&

 _balances[p1] == old(_balances[p1]) && _allowances[p2][p3] ==

 old(_allowances[p2][p3]) && other_state_variables ==

 old(other_state_variables)))))

erc20-transferfrom-fail-exceed-balance

Function transferFrom Fails if the Requested Amount Exceeds the Available Balance. Any call of the form

transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address from must fail.

Specification:

[](started(contract.transferFrom(from, to, value), value > _balances[from] &&

 _balances[from] >= 0 && _balances[from] <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-fail-exceed-allowance

APPENDIX UNITYMETA TOKEN AUDIT

Function transferFrom Fails if the Requested Amount Exceeds the Available Allowance. Any call of the form

transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address msg.sender must

fail. Specification:

[](started(contract.transferFrom(from, to, value), value >

 _allowances[from][msg.sender] && _allowances[from][msg.sender] >= 0 && value <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

 value), return == false) || finished(contract.transferFrom(from, to,

 value), return == true && (msg.sender == from ||

 _allowances[from][msg.sender] ==

 0xFF))))

erc20-transferfrom-fail-recipient-overflow

Function transferFrom Prevents Overflows in the Recipient's Balance. Any call of transferFrom(from, dest, amount)

with a value in amount whose transfer would cause an overflow of the balance of address dest must fail. Specification:

[](started(contract.transferFrom(from, to, value), from != to && _balances[to] +

 value >= 0x100 &&

 value < 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

 value), return == false) || finished(contract.transferFrom(from, to,

 value), _balances[to] > old(_balances[to]) + value -

 0x100)))

erc20-transferfrom-false

If Function transferFrom Returns false , the Contract's State Has Not Been Changed. If transferFrom returns false

to signal a failure, it must undo all incurred state changes before returning to the caller. Specification:

[](willSucceed(contract.transferFrom(from, to, value)) ==>

 <>(finished(contract.transferFrom(from, to, value), return == false ==>

 (_balances == old(_balances) && _totalSupply == old(_totalSupply) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables)))))

erc20-transferfrom-never-return-false

Function transferFrom Never Returns false . The transferFrom function must never return false . Specification:

[](!(finished(contract.transferFrom, return == false)))

APPENDIX UNITYMETA TOKEN AUDIT

Properties related to function totalSupply

erc20-totalsupply-succeed-always

Function totalSupply Always Succeeds. The function totalSupply must always succeeds, assuming that its execution

does not run out of gas. Specification:

[](started(contract.totalSupply) ==> <>(finished(contract.totalSupply)))

erc20-totalsupply-correct-value

Function totalSupply Returns the Value of the Corresponding State Variable. The totalSupply function must return the

value that is held in the corresponding state variable of contract contract. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply, return

 == _totalSupply)))

erc20-totalsupply-change-state

Function totalSupply Does Not Change the Contract's State. The totalSupply function in contract contract must not

change any state variables. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply,

 _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables))))

Properties related to function balanceOf

erc20-balanceof-succeed-always

Function balanceOf Always Succeeds. Function balanceOf must always succeed if it does not run out of gas.

Specification:

[](started(contract.balanceOf) ==> <>(finished(contract.balanceOf)))

erc20-balanceof-correct-value

Function balanceOf Returns the Correct Value. Invocations of balanceOf(owner) must return the value that is held in the

contract's balance mapping for address owner . Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

 return == _balances[owner])))

erc20-balanceof-change-state

APPENDIX UNITYMETA TOKEN AUDIT

Function balanceOf Does Not Change the Contract's State. Function balanceOf must not change any of the contract's

state variables. Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

 _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables))))

Properties related to function allowance

erc20-allowance-succeed-always

Function allowance Always Succeeds. Function allowance must always succeed, assuming that its execution does not

run out of gas. Specification:

[](started(contract.allowance) ==> <>(finished(contract.allowance)))

erc20-allowance-correct-value

Function allowance Returns Correct Value. Invocations of allowance(owner, spender) must return the allowance that

address spender has over tokens held by address owner . Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

 <>(finished(contract.allowance(owner, spender), return ==

 _allowances[owner][spender])))

erc20-allowance-change-state

Function allowance Does Not Change the Contract's State. Function allowance must not change any of the contract's

state variables. Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

 <>(finished(contract.allowance(owner, spender), _totalSupply == old(_totalSupply)

 && _balances == old(_balances) && _allowances == old(_allowances) &&

 other_state_variables == old(other_state_variables))))

Properties related to function approve

erc20-approve-revert-zero

Function approve Prevents Giving Approvals For the Zero Address. All calls of the form approve(spender, amount) must

fail if the address in spender is the zero address. Specification:

APPENDIX UNITYMETA TOKEN AUDIT

[](started(contract.approve(spender, value), spender == address(0)) ==>

 <>(reverted(contract.approve) || finished(contract.approve(spender, value),

 return == false)))

erc20-approve-succeed-normal

Function approve Succeeds for Admissible Inputs. All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas. Specification:

[](started(contract.approve(spender, value), spender != address(0)) ==>

 <>(finished(contract.approve(spender, value), return == true)))

erc20-approve-correct-amount

Function approve Updates the Approval Mapping Correctly. All non-reverting calls of the form approve(spender, amount)

that return true must correctly update the allowance mapping according to the address msg.sender and the values of

spender and amount . Specification:

[](willSucceed(contract.approve(spender, value), spender != address(0) && value >=

 0 && value <

 0x100) ==>

 <>(finished(contract.approve(spender, value), return == true ==>

 _allowances[msg.sender][spender] == value)))

erc20-approve-change-state

Function approve Has No Unexpected State Changes. All calls of the form approve(spender, amount) must only update

the allowance mapping according to the address msg.sender and the values of spender and amount and incur no other

state changes. Specification:

[](willSucceed(contract.approve(spender, value), spender != address(0) && (p1 !=

 msg.sender || p2 != spender)) ==> <>(finished(contract.approve(spender,

 value), return == true ==> _totalSupply == old(_totalSupply) && _balances

 == old(_balances) && _allowances[p1][p2] == old(_allowances[p1][p2]) &&

 other_state_variables == old(other_state_variables))))

erc20-approve-false

If Function approve Returns false , the Contract's State Has Not Been Changed. If function approve returns false to

signal a failure, it must undo all state changes that it incurred before returning to the caller. Specification:

APPENDIX UNITYMETA TOKEN AUDIT

[](willSucceed(contract.approve(spender, value)) ==>

 <>(finished(contract.approve(spender, value), return == false ==> (_balances ==

 old(_balances) && _totalSupply == old(_totalSupply) && _allowances ==

 old(_allowances) && other_state_variables == old(other_state_variables)))))

erc20-approve-never-return-false

Function approve Never Returns false . The function approve must never returns false . Specification:

[](!(finished(contract.approve, return == false)))

APPENDIX UNITYMETA TOKEN AUDIT

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER UNITYMETA TOKEN AUDIT

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER UNITYMETA TOKEN AUDIT

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

UnityMeta Token Audit Security Assessment CertiK Verified on Feb 28th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

